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What this paper is about

We introduce a new method that combines two popular modelling techniques
1. Penalized regression spline
2. Decision tree approach (e.g. Random Forest or XGBoost)

Why:
* Penalized regression splines are one of the most used methods for smoothing noisy data.
* Decision tree based methods are great at simultaneously clustering and averaging data.

Our combination method improves on a regression spline model
* avoids overshooting
* does not limit accuracy where data is plentiful

We demonstrate our approach by estimating a geo-spatial price surface for newbuild apartments in
Viennain 2020.
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Introduction

A three-dimensional house price surfaces can be useful to
* identify regional subcenters (McMillen, 2001),

* provide inputs for quantitative spatial models (Allen and Arkolakis, 2014;
Ahlfeldt et al., 2015),

» estimate spillover efects of local amenities such as public schools (Gibbons
and Machin, 2003), and

* replace regional fixed effects in hedonic house price models (Hill and Scholz,
2018).

Price surfaces can be constructed in different ways: KNN, locally weighted
regression, kernel regression, penalized regression splines, etc.

Penalized regression splines have benefits over other methods when estimating
geospatial price surfaces (Craig and Ng, 2001; Bao andWan, 2004; Hill and Scholz,
2018; Melser and Hill, 2019).



Introduction cont.

e Starting in the 1950s spline functions popular for modelling complex
surfaces (especially in industrial production)

* Broader academic interest since the 1970s (de Boor 1978, Wahba &
Wold 1975, Hastie & Tibshirani 1986)

* Increasingly employed in housing economics (Bao and Wan 2004, Hill
and Scholz 2018, Melser and Hill 2019, Diewert and Shimizu 2019)



Introduction cont.

However, there is a problem with splines:
* They are bad at extrapolating into areas without data support = they ‘overshoot’ (i.e.,

produce highly implausible values)

—— True signal

e Overshooting is worst at boundaries
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Figure: Spline behaviour by different length of data gaps




Problem and solution

* Housing data is not directly suited for spline estimation:
- they are not evenly distributed
- there are many data gaps

- we introduce helper points in data-gap areas prior to estimating the penalized
regression spline surface.

* We estimate helper point values with decision-tree-based algorithm (e.g. XGBoost).

 Combination of penalized regression splines with the decision tree-based helper
points optimally combines the strengths of each method.



Penalized regression splines

* Piece-wise polynomial functions, defined locally between "knots”.
* between knots they are formed by adding polynomial basis functions.
* At knot values they are combined so that overall spline function is smooth and twice-differentiable.

e A penalization parameter alpha puts a cost on overall wiggliness of the overall spline function.

The objective of a penalized regression spline is to find the function that solves the following minimization
problem:

%;?{2@5 )R+ f (" (0 dx).

* When optimizing the spline function, coefficients for each of the basis functions are determined so that
together they approximate the underlying data generating function. The value of the spline function at point
X is then simply the sum of these estimated basis functions at x:

.
F0) = ) Bib(x).
k=1



How splines operate in regions with missing data?

No data points = deviations are without cost.

The only binding constraint in such areas is the global constraint to keep the
overall “wiggliness” as low as possible, which is achieved by minimizing the
spline’s second derivative. This is accomplished by establishing a "peak” or
“trough” in the estimated values; in other words, the algorithm overshoots.

True signal
¥ Sample ¥ Sample
> Spline prediction 24 @ Spline prediction
3
F4 b

A / p

Y + % I '.

Y




——— Spline —— Spline
e Data e Data
* XGBoost

price/m?

Our solution concept

price/m?

x-coordinale\

(a) Spline fitting on original data

x—coordinale\

(b) Fit a tree-based model to estimate helper values

—— Spline

Data

Helper points

Spline with helper points

price/m?
LI

x—coordinalei

(c) Spline with and without helper points)

Figure 2: Illustration of Guided Spline Function Approach



(c) Spline surface with 19 helper points

(d) Spline surface with 177 helper points

Guided spline estimation:
Estimated square-meter price for

new-built apartments in Vienna
in 2020

- Boundary values become a
lot better when helper points
included.

- We do not need many helper
points!



Estimating spline performance in data gap areas

To produce (additional) artificial data gap areas, we define equally sized areas by placing a grid over the map of
Vienna. Then, we take one cell as our cut-out sample and fit spline surfaces without and with the inclusion of
helper points on the remaining data. Repeat with next cell....

I Area without data
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Transaction data

min. dist. (# HP) without HPs  with HPs .-- 72007
48.28 __ / ,
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o
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1168 HPs (no transactions data) 1419.21 970.72

16.25 16.35 16.45 16.55



Testing out-of-sample accuracy

How well can spline surfaces predict the price

of unseen properties from the dataset? Placement of helper points Mean Absolute Error MAE

- split data by randomly placing half of the

property locations in each subset. Sap SIze without HPs — with HPs
— estimate spline surfaces with and without 5 km 1113.71 1105.30
helper points
o 2.5 km 1113.71 1086.08
-2 Finding: out-of-sample accuracy best when a
low number of helper points is included. I km 1113.71 1128.89

0.5 km 1113.71 1136.47




Conclusion

we introduced the concept of guided spline construction with helper points.

our method incorporates a decision-tree-based algorithm along with the
penalized regression spline estimation.

both of these approaches can represent local price levels, but neither is ideal on
its own.

Findings:

guided spline method can prevent overshooting of spline values in regions with
low data density (especially at boundary regions) and simultaneously maintain
the spline function’s flexibility in data-rich regions.

Guided spline method can also improve overall out-of-sample accuracy as long as
helper points are not placed too closely to existing values.



Thank you for your attention!

For comments please contact me at:

miriamsteurer@hotmail.com

miriam.steurer@uni-graz.at
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Appendix: Pseudo algorithm for the implementation of the spline esti-

mation with helper points

Algorithm 1 Geo-spatial cross validation with test grid size Skm-by-5km as illustrated in 2?

1:

2:

3:

data « all transactions
mingis; < 2.5 // min distance to nearest observation for helper points
latitude,,, «— 0.044966 // haversine distance of 5 km along latitude

longitude.p <« 0.067416 // haversine distance of 5 km along longitude

: latitudejis «— sequence(min(datal”Latitude”|, max(data|”Latitude™], latitude g¢p)

longitudejisy «— sequence(min(datal|”Longitude”], max(data|” Longitude™]. longitude.ep)

: helperpoints « list()

for i = 1 to Length(latitude;) — 1 do
for j = 1 to Length(longitude;iss) — 1 do
trainData «— data|” Latitude™| = latitudejigy[i] AND
data|” Latitude™] < latitude;y|i + 1] AND
data|”Longitude”] > longitudejiy| jl AND
data|”Longitude”] < longitudejs|j+ 1]
testData «— data not in trainData

rounds «— 0

while rounds < 100000 do
rounds =0
randigisude — randomilatitudemin, latitudemay)
randionginde — random(longitudemn, longitudemay)
rand,, «— (randjongitude. randiggigude)
diStyecor +— calculate distance from rand, to all latitude. longitude pairs in rrainData
if min(distyecior) <= mingis; then
append random point to helper points
else
rounds+ = 1 [/increase rounds by 1
end if
end while
end for

end for

: Train XG Boost model on trainData

Helper « Predict price from XG Boost model for all helperpoints
trainDataH elper « trainDara + Helper
splineHelperPoints « (rain spline on latitude, longitude from rrainDataHelper 1o predict square

meter price on testData 27



XGBoost output

Lak=48.2041772

Lat=4§.1623214

yes, missNg N fres. mussng

leaf=0). 352663147

ves, mlssim 1 s, missing

Y

Lat=48 1243767

Tong 16 3162408

yes, misang no [VES, MIssIng

leaf=0 505755126 leaf=0. 36901 1549 leaf=0 496971283

Figure B1: Sample Tree of used XGBoost model
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